On Lipschitz Perturbations of a Self-Adjoint Strongly Positive Operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Rank One H−3-Perturbations of Positive Self–adjoint Operators

Rank one H−3 perturbations of positive self–adjoint operators are constructed using a certain extended Hilbert space and regularization procedures. Applications to Schrödinger operators with point interactions are discussed.

متن کامل

Correspondence of the eigenvalues of a non-self-adjoint operator to those of a self-adjoint operator

We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many real eigenvalues which accumulate only at ±∞. We use this result to determine the asymptotic distribution of the eigenvalues and to compute some of ...

متن کامل

Self-adjoint Extensions by Additive Perturbations

Let AN be the symmetric operator given by the restriction of A toN , where A is a self-adjoint operator on the Hilbert space H and N is a linear dense set which is closed with respect to the graph norm on D(A), the operator domain of A. We show that any self-adjoint extension AΘ of AN such that D(AΘ)∩D(A) = N can be additively decomposed by the sum AΘ = Ā + TΘ, where both the operators Ā and TΘ...

متن کامل

On Eigenvalues Problem for Self-adjoint Operators with Singular Perturbations

We investigate the eigengenvalues problem for self-adjoint operators with the singular perturbations. The general results presented here include weakly as well as strongly singular cases. We illustrate these results on two models which correspond to so-called additive strongly singular perturbations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2013

ISSN: 0972-6802,1758-4965

DOI: 10.1155/2013/902563